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Chapter 5 

Reference systems 

5-1   Introduction  

It is known that by means of certain mathematical operations we can transfer our 

physical observations into geodetic information of position, azimuth, elevation, 

distance, or  size and shape of the earth.  

A coordinate system is necessary for all our calculations , whether as an 

intermediate step or end result. Such a reference system may take many forms of 

which sometimes one, and sometimes another may be the most convenient. Some of 

these systems, which are of special importance in geodesy, may be described briefly as 

follows: 

5-2   Natural Coordinate System  , ,  

Astronomical observations for latitude, longitude, and azimuths are measured 

with reference to the direction of gravity at the point of observation. In the 

natural coordinate system the position of any point on the earth’s surface can be 

fixed by observing its astronomic latitude, longitude, and its orthometric height, 

figure (5-1).  

1) Astronomical Latitude  : is the angle between the equatorial plane and the 

direction of the vertical at the point of observation. 

2) Astronomical Longitude : is the angle between the meridian plane of the 

observation point and the meridian plane of Greenwich. 

3) Orthometric Height : is the height of a point above mean sea level. It is 

measured along the curved plumb line and obtained from spirit levelling and 

gravity observations.  
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Consequently, the quantities ,  , and define the position of the observer with 

respect to the geoid & the mean rotational axis of the earth. 

5-3   Geodetic Coordination System    , , h  

Since the deviations of the geoid from the reference ellipsoid are small and can be 

computed, it is convenient to add small reductions to the observed coordinate so that, 

values refer to an ellipsoid can be established, which are called geodetic coordinates, 

figure (5-2). 
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1) Geodetic Latitude : is the angle between the ellipsoidal normal of the 

observers projected position on the geoid and the perpendicular to the mean 

rotation axis of the earth. 

2) Geodetic Longitude : is the angle between the same ellipsoidal normal and 

Greenwich meridian plane. 

3) Geodetic Height h : is the height of the observer above the reference ellipsoid, 

measured along the ellipsoidal normal. 

 

The geodetic coordinates are determined from Triangulation or Trilateration 

observed on the earth surface, reduced to the ellipsoid. 

They could also be obtained directly from the astronomic coordinates reduced to the 

used reference ellipsoid. 

5- 4   Rectangular Coordinate System X, Y, Z. 

Generally,  it is convenient to take the X-axis parallel to the meridian of Greenwich; 

the Y-axis has the longitude of 90˚ east of Greenwich, and the Z-axis parallel to the 

CIO (conventional international origin of polar motion). Ideally the origin of the 

rectangular coordinates system should be at the earth’s center of gravity; the system is 

known as “Average Terrestrial Coordinate System”. When the origin is at the 

geometric center of the ellipsoid, and not in the (C.G.) of the earrth, it is known as 

“Geodetic Coordinate System” figure (5-3). 
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5-5   Local Coordinate System (Horizon System) U, V, W. 

In this system the coordinates U, V, W are expressed as functions of the observed 

azimuth A, zenith distances Z & spatial distance S. figure (5-4)  

 

 

 

 

 

 

illustrates the quantities of this system. The origin is considered to be at the 

observation station P. the positive U-axis points N-ward, the positive V-axis points 

eastward and the positive W-axis coincides with the outward direction of the plumb 

line. 

The coordinate equations of an object Q sighted in this system may be written 

simply by referring to the fig. 

AZSU cossin  

AZSV sinsin          (5-1) 

ZSW cos  

5- 6 Relations between different Reference Systems 

There are certain mathematical relations connecting the previous coordinate 

systems. These relations are among the basic equations in geodesy. Some of these 

relations will be considered in the next subsections. 
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5-6-1   Relation between Astronomic and Geodetic Coordinates 

Since the astronomical system depends on the direction of the vertical “actual 

gravity field”, while the geodetic system depends on the direction of the ellipsoidal 

normal “normal gravity field”, then the relation between both systems depends mainly 

on the difference between the two directions. The total difference between the two 

directions is the well-known deflection of the vertical  . It has two components, a 

north-south component   and an east-west component . We can read from figure (5-

5) the following:  

 

 

 

 

 

 

 

 

 

 

            (5-2a) 

 cos)(           (5-2b) 

5.022 )(            (5-2c) 

 

According to Helmert’s projection, which neglects the curvature of the plumb line, 

a point P on the earth’s surface is directly projected onto the ellipsoid by means of 

straight ellipsoidal normal, point 1P . Then the ellipsoidal height is given by  

NHh            (5-3) 

In pursuing this relationship, it is important to remember Pizzetti’s projection, 

figure (5-6). In this projection the same point P is projected along the curved plumb 

line onto 

 



 7 

 

 

 

 

 

 

 

 

 

 

 

the geoid, point Pο, and then projected onto the ellipsoid, point P2. The practical 

difference between the two projections is small, and within a fraction of millimeters. 

5-6-2 Relation between Rectangular and Curvilinear Geodetic 

Coordinates: 

The coordinate transformation between the curvilinear geodetic coordinates and the 

Cartesian coordinates may be expressed symbolically by  

),,(),,(
),(

ZYXh
fa
     

From figure (5-7) the relation between the two systems can be written as follows; 

                           (5-4) 

where, 

N  Radius of curvature in the prime vertical 

 

5.022 )sin1( e

a
N


  

  

h  Ellipsoidal height 

Also, from same figure, we can read 

       KZZ  1  







sin

cos

cos)(

P

P

P

RY

RX

hNR






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where, 

sin)(1 hNZ   

sin2eNK     

Combining the latter expression with the formers, we get: 

  coscos)( hNX          (5-5a) 

 sincos)( hNY          (5-5b) 

sin))1(( 2 heNZ          (5-5c) 

These equations are the basic transformation formulas between the geodetic 

coordinates h,, and the rectangular coordinates ZYX ,, of a point outside the 

ellipsoid. The origin of the rectangular coordinate system is the center of the ellipsoid, 

and the Z-axis is its axis of rotation; the X-axis has the Greenwich 0 longitude and the 

Y-axis has longitude 90 east of Greenwich (i.e., 90 ). 

Inverse Procedure: 

The computation of h,, from given ZYX ,, is more complicated because the three 

equations have four unknowns, N including  . Accordingly, the computation could be 

done iteratively in addition to the direct solution. Many solutions, through iteration, 

were given for this problem, for example; HIRVONEN & MORITZ 1963 BARTELME 

& MEISEL 1975, RAPP and KRAUSS 1976. Also a non-iterative solution was given 

by SUENKEL 1976. 

For the iterative solution we shall follow (Hirvonen & Moritz 1963). Now from 

figure (5-7) we find  
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cos)()( 5.022 hNYXRP   

hence 

         (5-6) 

 

Equation (5-5) may be transformed into 

 

 

 

 

where 

 

 

 

Dividing this equation by the above expression for PR we get 

 

so that 

       (5-7) 

 

Given ZYX ,, and hence, PR equations (5-6) and (5-7) may be solved iteratively for 

h and  . 

As a first approximation, we set 0h  in (5-7), obtaining 

 

Using 1 , we compute an approximate value 1N by means of  

5.0

1

221
)sin1( e

a
N


          (5-8)  

and introduce this value of 1N  in equation (5-6) to get an approximate value 1h . 

1

1

1
cos

N
R

h P 


 

 

Now, as a second approximation, we set 1hh   in (5-7) obtaining 
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1

11

12

2 )1(tan 




hN

N
e

R

Z

P

   

 

Using 2 ,  improved values for N & h are found, etc. This procedure is repeated 

until the values of   & h remain practically constant. The third value λ can be easily 

calculated from  

 
X

Ytan                                           

                                                                           (5-9) 

 

5-6-3   Relation between Horizon and Rectangular System 

Since all the observations in geodesy, mainly horizontal, vertical angles, and spatial 

distances, are made with respect to the direction of the vertical at the observation 

station. Then it is important to find out the relations connecting these observable 

quantities of these two systems. Figure (5-8) illustrates the quantities of these two 

systems, where point P represents the occupied station, Q is the observed objects, and  
pq 

 is the horizontal projection of the spatial distance S onto the horizon plane Psqn of 

the local system WVU ,, . Then by equation (5-1) we can compute wvu ,,  of any point Q

from station P . The plane through points qOM ,, is parallel to the equatorial plane of 

the ZYX ,, system. The projection of this horizon plane on RqMO  plane is given as 

follows  

MNNOMO   

 sincos uwMO              (5-10) 

Likewise  







sincos

cossin

sincos

wuqQPMZ

vMObqaOY

vMOObMaX

      (5-11) 

Then, the final form are achieved by combining these relations together as follows 

12

1 )1(tan  e
R

Z

P


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w
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





sin0cos
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Or in matrix notation uRX T   
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Chapter 6 

Effect of the direction of the gravity vector on the geodetic 

computations “gravimetric effect” 

We all know the principle of triangulation, where distances and elevations are 

obtained indirectly by measuring the horizontal and vertical angles in a suitable 

network of triangles. Only one base line is necessary to furnish the scale of the 

network, and one azimuth furnishes the orientation of it. The computation of 

triangulations on the ellipsoid is easy. But, we must not forget that our observation 

were taken relative to the direction of the gravity vector, while the computations will 

be carried out on the surface of the ellipsoid using fictitious observations taken relative 

to the direction of the normal to the ellipsoid, it is therefore convenient to reduce the 

measured angles, base lines, and long distances to the ellipsoid, in much the same way 

as the astronomical coordinate are treated.  

The new observations after reduction can then be used to calculate the geodetic 

coordinates h,,  for each point of the triangulation net. One should not forget that 

during the calculation the geometrical effect of the ellipsoid on the observations 

should also be taken into consideration. 

6-1   Gravimetric Effect on Astronomic Azimuth 

Let us consider a celestial sphere, figure (6-1), with its center at the observation 

station P , and the actual plumb line intersects this sphere at the astronomical zenith aZ , 

whereas the ellipsoidal normal intersects it at the geodetic zenith gZ . The line of sight 

to the target for which the azimuth A is measured, intersects this sphere at point T and 

has the zenith distances Z and Z with respect to aZ  and gZ . NP  Corresponds to the 

direction of the North Pole, which has the zenith distances 90 and 90 with 

respect to aZ and gZ . 
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From figure (6-1), the angle at NP  is the difference between the astronomical and 

the geodetic longitude. 

           (6-1) 

The angle at aZ  ( NP aZ T ) is the astronomical azimuth A for targetT , and the angle 

at gZ  ( NP gZ T ) is the geodetic azimuth  for the same target T .  

The point F lies on the astronomical meridian, the great circle connecting NP  and 

aZ , so that the angle ga FZZ is 90 . The components of the deflection of the vertical are 

as follows  

FZa   &   FZ g  

The difference between astronomic and geodetic azimuth is given by 

  A          (6-2) 

and it consists of two parts 1 , and 2  fig. (2-1) 
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The value of 1  is obtained from the spherical triangle gN aN NP  by Napier’s rule 

as follows: 

)90cos()90cos(sin 1         (6-3) 

For the small angles we can use the approximation 

 








)90cos(

sin 11
 

Thus we find 

 sin1           (6-4) 

Or using equation (6-2b) together with (6-4) we get  

 tan1           (6-5) 

On introducing a point G on the great circle connecting gZ and T so that the angle 

and ( gaGZZ ) is90 , putting ( GZ a ) equals  , we see that the figure ( aga TGTTZ ) has the 

same geometry as the figure ( gag NFPNZ ), so that 2 ,  , Z correspond to 

  90,,1 .  

Accordingly the equation corresponding to (6-5) is thus  

ZZ cotcot2           (6-6) 

Since the small figure ( GFZZ ga ) may be considered plane we get by the usual 

formula of transformation of plane coordinates: 

 cossin          (6-7) 

So  that 

Zcot)cossin(2          (6-8) 

Now combining (6-5) & (6-8) we obtain 

Zcot)cossin(tan         (6-9) 

Equation (6-9) is the well-known “Laplace Equation” in its complete form; the first 

term is the same for every target independent of its azimuth and zenith distance. And it 

results from the fact that astronomical north aN  rather than from geodetic north gN  as 

the geodetic azimuth. It thus represents a shift of the zero point, which is the same for 

all targets. The second term arises because the target T is projected from aZ  and gZ

onto different points aT and gT of the horizon; the effect is the same as that of an 

inaccurate levelling of the theodolite. 

Usually in first-order triangulation the lines of sight are almost horizontal, so that 

0cot,90  ZZ  . Therefore, the correction can in general be neglected & we thus get 

 sintan          (6-10) 
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This is also the Laplace equation but in its simplified form. It is remarkable that the 

differences 

  A   and       

Should be related in such a simple way 

Recall now the enlarged section of figure (6-1), this section will be used to illustrate 

the way of computing the deflection of the vertical components in any direction  , 

and  are related to  and  by plane coordinate transformation as follows 

 sincos          (6-11) 

 cossin          (6-12) 

6-2   Gravimetric Effect on Vertical Angles  

As we have seen from the previous discussion that the component of the deflection 

of the vertical in any direction is given by eq. (6-11). 

Figure (6-2) is another illustration for the astronomic “measured” zenith distance Z  

and the geodetic zenith distance Z .  
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the relation between both zenith distances is simply given by;  

 ZZ           (6-13) 

6-3   Gravimetric Effect on Horizontal Angles 

Any horizontal angle may be considered as the differences between two azimuths. 

Accordingly the corresponding horizontal angle, which refers to the direction of the 

normal “W ”, can be computed as the difference between the two corresponding 

geodetic azimuths: 

1221  W          (6-14) 

where 

222

111









A

A
         

Then, equation (6-14) takes the form  

 

)()( 121221   AAW        (6-15) 

Hence we can apply equation (6-9) for Δα1 and Δα2. It can be seen that the main 

term η tan φdrops out , so that equation (6-15) wil take the form; 

1112221221 cot)cossin(cot)cossin()( ZZAAW    (6-16) 

We can notice that for nearly horizontal lines of sight the difference both horizontal 

angles are very small and can be neglected. 

6-4   Gravimetric Effect on Base Lines 

Figure (6-3) illustrates the reduction of measured base lines to the ellipsoid. Denote 

an element of the measured distance by 1d . It has an inclination   towards the local 

horizon. The deflection component in the direction of the measured line that has the 

azimuth   is again denoted by . The element ds , which is the component of 1d  

parallel to the ellipsoid, is  

 sin1cos1)cos(1 dddds        (6-17) 

Denoting the projection of d1 onto the local horizon by d1,  

cos11 dd           (6-18) 

And noting that 

dhd sin1          (6-19) 
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We have 

dhdds  1          (6-20)  

If R is the local radius of curvature of azimuth of the ellipsoid, then it is shown in 

differential geometry that  

NMR

 22 sincos1
         (6-21) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where M and N are, respectively, the north-south and east-west radii of curvature. 

Then, if ds is the projection of 1d onto the ellipsoid,  

R

h

R

hR

ds

ds



 1



 

Or 

 ds
R

h
dhdds

R

h
dsds  1       (6-22) 

Setting 

d
R

ds
          (6-23) 

We have 

)()(11   hdhddhddhdds  
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And on integration between the end points A and B we get 

 

B

A

AABB hdhhdS )(1        (6-24) 

 

If the elevation h is nearly constant along the line, as always occurs in base-line 

measurements, then the application of a mean-value theorem of integral calculus gives 



B

A

ABmAABB dhhhlS  )(  

Here 


B

A

dl cos1  

Is the sum of the locally reduced 1d , and mh  is a mean elevation along the line. On 

expressing d in terms of ds by (6-23) and integrating we finally obtain  

 S
R

hm
hhhhlS mAAmBB  )()(       (6-25) 

Strictly speaking, R the local ellipsoidal radius of curvature of azimuth  , is slightly 

variable along the line A to B . In practice, however, it is perfectly permissible to 

replace the local value of R  by its average along the line, so that R  in (6-23) can be 

considered constant, which leads to (6-25). This amount of the approximation of the 

ellipsoidal arc AB by a circular arc whose radius R is the average along AB of the 

values given by (6-21). 

The terms with A and B represent the effect of the inclination between the 

geopotential and spheropotential surfaces, they will often be negligible. The term (

RhS m / ) is due to the convergence of the ellipsoidal normals. 

The rigorous reduction of base lines according to the equation (6-25) thus involves 

the geoid undulation N , through the height h above the ellipsoid, and the deflection of 

the vertical  . The base lines are reduced directly to the ellipsoid by means of the 

straight ellipsoidal normals, in conformity with Helmert’s projection. 

6-5   Reduction of Spatial Distances  

Electronic measurement of distance yields straight spatial distance l  between two 

points A and B (figure 6-4). These distances may either be used directly for 

computation in geodetic coordinate system  ,  , h as in three-dimensional geodesy, 

or they may be reduced to the surface of the ellipsoid to obtain chord distances 0l or 

geodesic distances S . The ellipsoidal arc A  B is approximated  
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by circular arc of radius R that is the mean ellipsoidal radius of curvature along A  

B applying the law of cosines to the triangle OAB and we get  

cos))((2)()( 21

2

2

2

1

2 hRhRhRhRl   

with )
2

(sin21cos 2    

This is transformed into 

)
2

(sin)1)(1(4)( 22122

12

2 

R

h

R

h
Rhhl   

and with  

)
2

sin(2


Rl   

and the abbreviation   12 hhh   we obtain 
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22122 )1)(1( l
R

h

R

h
hl   

Hence the chord l  and the arc S are expressed by  

 5.0

21

22 )))/())(/(/()(( RhlRhlhll     

)2/(sin2 1 RlRRS 
   

The reason for the great difference between the reduction procedures for base lines 

may be considered as measured along the earth’s surface and piecewise reduced to the 

local horizon, which involves the direction of the vertical, whereas straight distances 

are independent of the vertical. Therefore, the deflection of the vertical does not have 

any influence on it. 
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Chapter 7 

Coordinate Transformation and Datum Shift 

7-1   Similarity Transformation 

In geodesy several transformation models are used for the transformation from 

one system to another. Consider for example, the satellite Doppler coordinat system 

D   [ , ,D D DX Y Z ]T and the geodetic coordinate system G   [ GX , GY , GZ ]T . The 

determined three-dimensional satellite Doppler coordinates are assumed to be the 

average terrestrial system. The average terrestrial system is a geocentric system. Also 

consider the geodetic system as the reference frame of the terrestrial network. Then 

the transformation between these two systems can be done by using several models, 

among them are the following models. 

7-1-1   Bursa Model  

Considering that the Doppler and terrestrial network position vectors 1D and 1G are 

observable, the transformation equation expressed in the Doppler system is readily 

seen from figure (7-1),  

(1 ) 0F T RG D             (7-1) 

Where  
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 T  denotes the translation vector between the origins of the two 

systems in the D-system. 

 1+  denotes the scale factor between the systems  

 R is the product of three consecutive orthogonal rotations around the 

axes of the G-system, and can be given as follows  

( ) ( ) ( )Z Z Y Y X XR R B R B R B         (7-2) 

Using the conventional definitions of rotation matrices, one can write 

1 0 0

( ) 0 cos sin

0 sin cos

cos 0 sin

( ) 0 1 0

sin 0 cos

cos sin 0

( ) sin cos 0

0 0 1

G

G

G

x x x x

x x

y y

y y

y y

z z

z z z z

R B B B

B B

B B

R B

B B

B B

R B B B









 

     (7-3) 

Since, the rotation between the two systems are small, it is permissible to write R 

in the following form. 

1 0 0 0

0 1 0 0

0 0 1 0

z z

z x

y x

B B

R I r B B

B B



    


     (7-4) 

Substituting (7-4) in (7-1) and neglecting second order terms in scale and 

rotations x y zB B B and their products, then the model can be written as  

0F T G G rG D             (7-5) 

Equations (7-2) and (7-5) define the relation between the two systems D and G in 

terms of seven parameters, three translation parameters, three rotation parameters, and 

scale factor. They are solved for in a least squares solution. The Cartesian coordinates 

of both systems are taken as observations. Equation (7-1) forms the mathematical 

model. 

( , ) 0a aF L X           (7-6) 

Or 
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( , ) 0bF L V X X           (7-7) 

where 

aL  denotes the adjusted observation 

aX  the adjusted parameters  

bL  the observations 

0X  the approximate parameters 

V the residuals  

X the parameters solved for 

Each point iP  yields one equation of (7-5). The model (7-5) can now be 

linearized and the usual adjustment procedure 

minTV PV           (7-8) 

Subject to the condition 

0BV AX W           (7-9) 

applied where 

/ aB F L   ,  / aA F X   ,  0( , )bW F L X  

And P is the weight matrix. Each point contributes three equations to the equation 

system (7-9), e.g., for point iP , taking 0X  = 0 one has 

1 0 0 1 0 0 1 0 0 0

0 1 0 0 1 0 0 1 0 0 0

0 0 1 0 0 1 0 0 1 0

XG

Y G

G G G G D

ZG

G G G G D

XD

G G G G DZ

Y D

Y

ZD

X

dX
V

dY
V

X Y Z X XdZ
V

Y X Z Y Y
V

Z X Y Z ZB
V

B
V

B

  

      

  

 

iB           iV       I   A         X       wi 

(7-10) 

The solution of the above system is as follows: 

1 1 1( )T TX A M A A M W           (7-11) 

1 1( )TV P B M AX W           (7-12) 

1 TM BP B           (7-13) 

2

0 ( ) /TV PV DF          (7-14) 
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7-1-2   Molodeniski-Badekas transformation model  

The difference between this model and Bursa Model is that the scale and rotation 

parameters are interpreted as pertaining to the terrestrial network represented by 

observable 0iG . The transformation equation for this model is easily given from figure 

(3-2) as follows  

(1 ) 0i iF T G RG D            (7-15) 

Where  
0iG  = iG - 0G = Terrestrial position vector differences 

0G   Is the position vector of the initial point o in the G-system 

iG   Is the position vector of the thi point from the initial point. 

By neglecting the second order terms in scale and rotation we get the following 

form 

0i i iF T G G QG D            (7-16) 

It can be noticed that in the Bursa model the geodetic position vector iG of each 

point is scaled and rotated, while with the Molodeniski-Badekas model only the 

interstation vectors 0iG are scaled and rotated, and the position vector 0G  of the initial 

point 0 is not redefined.  

Equation (7-16) is the mathematical model for least squares solution. Each 

common point contributes three condition equations similar to equation (7-10) and the 

solution of this system will follow the procedure of adjustment by the combined 

method. 
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7-2 Datum Shift 

By means of transformation (5-5) we can compute the rectangular coordinates X, 

Y, Z from the geodetic coordinates  ,  , h for a point outside the ellipsoid, which is 

defined by its dimensions, and its center, is the origin of the rectangular coordinate 

system. It is assumed that the center of this ellipsoid coincides with the earth center of 

gravity, that is, geocentric datum. Suppose that we define the same dimensions (semi-

major axis a, and the flattening f) for another reference ellipsoid, its center does not 

coincide with the earth’s center of gravity, but that the axis of the ellipsoid is parallel 

to the earth’s axis of rotation. Let the coordinates of this center with respect to the 

rectangular coordinates system are 0X , 0Y , 0Z . Then the equations (5-5) must be 

modified so that they become  

2 2

( )cos cos

( )cos sin

(( / ) )sin

O

O

O

X X N h

Y Y N h

Z Z b a N h

 

 



  

  

          (7-17) 

Where the principle radius of curvature in the prime vertical is known from 

geometry of the ellipsoid by 

2 2 0.5 2 0.5(1 sin ) (1 (2 )sin )N a e a f f        

Also the following approximation will be used letter in the differential formulas  

2(1 sin ),N a f     and 

2 2 2(1 ) (1 2 ) (1 2 sin )N e N f f a f f          

which leads to 

2(1 )N e N a    

If we vary the geodetic coordinates by small amount  ,  , and  h, and if we 

also alter the geodetic datum, reference ellipsoid, by a , f , and its position by small 

translation, parallel displacement, 0x , 0y , and 0z . Then the rectangular coordinates 

X, Y, Z change by. 
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o

o

o

X X X X X
h a fX X

a
Y Y Y Y YY Y

h a f f
Z Z h Z ZZ Z Z

a fh

   


  
  

  

 

    
    

        
    

   
     (7-18) 

1* 2*oX X R C R E            (7-19) 

And the partial derivatives will take the following form, (Soler 1976): 

sin cosX a  


  
 ,           cos sinX a  


  


,          cos cosX

h
  


 

sin sinY a  


  
 ,  cos cosY a  


 


,  cos sinY

h
  


 

cosZ a 


 
 ,  0Z


 


,    sinZ

h
 


 

cos cosX
a

  


,  2sin cos cosX a
f

   


 

cos sinY
a

  


,  2sin cos sinY a
f

   


 

sinZ
a

 


,   2sin (sin 2)Z a
f

   


  

Considering that the position of the point in space remains unchanged, then X = 

0, the change of the geodetic coordinates  ,  , h can also be represented as a function 

of the variation in the geodetic datum (a, f, 0x , 0y , 0z ), (Heiskanen & Moritz 1967), 

(Wolfgang 1980) as follows  

1 1 1

1 0 1 1 1 2R X R R C R R E             (7-20) 

Then 

1 1

1 0 1 2C R X R R E       (7-21) 

0

0

2

0

sin cos sin sin cos

0 2cos sin
sin cos

0 0 0
cos cos

1 sin
cos cos cos sin sin

a a a X
a

Y
fa a

h Z a

    

   
 

 
 

  
    




   


  
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It is possible also to represent the change  ,  ,  h, of the geodetic coordinates 

 ,  , h as a function of the variation  I ,I ,hI  at the initial point  I ,I ,hI  

instead of X 0, Y 0, Z 0. 

The translation vector X 0 can be given in terms of the given  I ,I ,hI  at the 

initial point by using equation (7-19) and  setting  

0X  , IC C  , 1 1IR R , 2 2IR R , 

And after rearrange it will take the form   

0 1 2I I IX R C R E           7-22 

Now  inserting equation (7-22) in (7-21) we get 

1 1 1

1 1 1 2 1 2( )I I IC R R C R R R R E           7-23 

Where 

1

1 1

cos cos [sin cos cos( )
sin sin( )

sin sin cos( ) sin cos ] /

sin sin( ) cos cos( ) cos sin( )

cos cos cos

[sin cos sin sin
[cos sin( ]

cos sin cos( )] cos c

I I I

I

I I I

I I I I I I
I

I I

I

I I

a

R R
a

a
a

     
  

     

        

  

   
  

    



   
 



   


 


 os cos( )I I  
 

And 

2

2

1 1 2

1 2 1 2

3

3

cos sin sin cos sin cos( )

sin cos cos( ) cos sin 2cos cos

cos sin( ) cos sin sin( )

sin sin [cos cos sin

cos cos cos( ) sin sin 2sin sin ]

I I I I

I I I I

I I I I I I

I I I

I I I I

a

R R R R a

a

      

       

      

    

       

 

   

 

     

 

 

 

The final form of this equation expresses the variations  ,  ,  h, at an 

arbitrary point in terms of the variations  I ,I , hI    at the initial point, and also 

the changes a and f of the parameters of the ellipsoid. 

Equation (7-23) can be expressed in terms of the variations of the deflection 

components  ,  , and the geoid undulation N by substituting  ,  , and h, by -

, - and  N as follows  

            7-23a 

cos             7-23b 

h N            7-23c 
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This is true because the astronomical coordinates are not affected by a datum shift 

and remain unchanged. These formulas for the effect of a shift of the geodetic datum 

are the well-known Vening Meinesz transformation formula. 

 

 

7-3 Best Fitting Datum and How To Achieve It In Practice. 

In our definition of a geodetic datum,  we have distinguished between global (or 

geocentric) datum and regional (local or geodetic) datum. The second one, although 

having its centre shifted generally from the earth’s centre of mass, it does have the 

advantage of approximating the geoid as much as possible in the particular region of 

interest. In other words, we can state that the main objective of using a regional datum 

is to get minimum deviations between the geoid and reference ellipsoid over the area 

in question. When we achieve such an objective, we say that we have obtained a “best 

fitting ellipsoid” or a “best fitting datum”, e.g., for our country. An ellipsoid that fits 

the geoid very well in a certain country does not necessarily fit in other country. 

The problem of determining the datum positional parameters at the initial point, 

as discussed in the previous sections, is solved temporarily by assuming the ellipsoid 

and geoid to be tangent at the intial point as a preliminary orientation and use the 

astronomic observations to fix the other parameters at the initial point. Such a 

constraint does not, of course, provide a best fitting ellipsoid for our region, since the 

deviations (deflections and undulations) between the elliposid and the geoid may 

increase drastically as we go away from the initial point. In this case, the only region 

of best fitting would be a very limited area around the initial point. Therefore, we have 

to change the assumed (preliminary) positional parameters at the initial point, as well 

as the two parameters defining the size and shape of the reference ellipsoid, and repeat 

our caculation of the geodetic control network until we obtain the minimum deviations 

between of interest.  

The above explained procedure is known in practice as the iterative solution to 

the problem of achieving a best fitting ellipsoid for a certain region. This proceus can 

be summarised in the following steps: 

1. Select the position of the datum initial point “i” (starting point of the 

network) to be in the geometrical centre of the region of interest, and 

having a rigid terrain surrounded by areas of modest variations in gravity. 

2. Select a reference ellipsoid, among the large list of ellipsoids used in 

practice, and specify the values of two parameters defining its size and 

shape (e.g. a and f). 
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3. Perform the preliminary orientation of the selected ellipsoid at the datum 

initial point, by setting : i  =  i = *
i

N  = 0, and use the astronomic 

measurements to determine the geodetic coordinates of the initial point, as 

well as the geodetic azimuth of one initial line, i.e. = i = i , i  = i and 

ij = Aij. By using equations (5,2a),(5,2b),(6,2) 

4. Form the  observation equations for directions,azimuthes and distances for 

the netweork (taking the appropriate weights of observations into account), 

and perform a least-squares rigorous adjustment ending-up with the 

adjusted values of the network  coordinates  and . 

5. Measure the astronomic latitude k and astronomic longitude k at all 

points “k” of the network, i.e. k = 1,2, .... n where n is the number of points 

in the network. From these astronomic coordinates and their corresponding 

geodetic values obtained in step number (4) above, we can use equations (5 

– 2a), (5-2b) and (5-3) to compute the astrogeodtic geoid, i.e. deflection 

components k ,  k and undulation *
k

N  - relative to the preliminary 

information at the initial point, where these quantities are fixed temporarily 

at zero values. 

6. Select one of the conditions of minimizing the deviations between the 

reference ellipsoid and the geoid. These conditions can be set-up as 

follows: 

n

k 1

  *
k

N


 = 0 ;                                                  (7-24) 

 
n

k 1

   * 2
k

N


 = minimum,                                  (7-25) 

or : 
n

k 1

 2
k




 = minimum,                                (7-26) 

in which the “bar” is assigned for each quantity after minimization 

and ““ is the total deflection of the vertical. In practice, however, the last 

condition is the most popular, and hence it is usually the one being used. 

Equation (7-26) can be rewritten again, using eq. (5-2c), as : 

n

k 1

  (  
2

k+
2

k    ) = minimum.      (7-27)  

7. Denote the observed (i.e. computed) astrogeodtic deflection components, 

obtained in step number (5) above, by just k and  k , i.e. without the “bar” 

used in step number (6), we can write the following expressions; 
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k k k

k k k

d

d

  

  





 

           (7-28)

 

where d k and d k are the changes required to be applied to the 

observed deflections (k , k) to make the sum of their squares a minimum 

and provide a bestfitting ellipsoid, according to eq. (7-27). These changes, 

e.g. dk , d k can be expressed as a function whose main arguments are the 

required changes in the ellipsoid size and shape parameters (a, f) and the 

independant three positional parameters (i, i, 
*
i

N ) which were  

incorrectly specified to be zeros at the datum initial point. Such a function 

can  be simply expressed as follows: 

dk = F1 (di , di , d
*
i

N , da, df),       (7-29) 

and : 

 d k = F2 (di , di , d
*
i

N , da, df),      (7-30) 

8. We can write  these two equations for    dk and  d k   For all stations 

having observed astrogeodetic deflections “k”, k = 1, 2 .....n, ,  in matrix 

notation as: 

V = AX + L ,             (7-31) 

where  

V  is the vector of deflection components after minimization. 

 L is the vector of astrogeodetic deflection components before 

minimization (i.e. computed from astro-observations.  

X  is a vector of five unknown components which are the two corrections 

to the chosen ellipsoid  (da, df )and three corrections to the assumed 

deflection components and geoid undulation at the datum intial point 

(di , di , d
*
i

N ).  

A  is known as the cooficient matrix of the unknown parameters X. 

 

9. Apply the parametric least-squares estimation procedure on eq. (7-31), 

which can be considered as an observation equation. The least-squares 

condition in this case will be: 

V 
T
PV = minimum,            (7-32) 

where  

P is the weight matrix of the observed astrogeodetic deflection 

components. 
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 Equation (7-32) satisfies eq. (7-27) which is the condition for getting a 

best-fitting ellipsoid. 

10.  Substituting from (7-31) into (7-32) and perform the minimization process, 

we finally end-up with the following solution vector X of the required 

corrections to the five previously stated unknown parameters, which is : 

X = (A 
T
PA)

-1
 (A 

T
PL).                                     (7-33) 

11. Add the compenents of X - vector, as obtoined from the last equation, to 

the assumed approximate values of the five parameters, and get the new 

best fitting values for (i, i, Ni) of the initial point, as well as  a,f  . 
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Chapter 8 

Classical and Three-Dimensional Geodetic Computations 

8-1   Classical Geodetic Computation 

All the observations in a triangulation network, which includes astronomical 

longitudes, latitudes, azimuths, horizontal directions, zenith distances, and spirit 

levelling, are gravity dependent. For example, all the angles observed by a theodolite 

are measured when it is leveled in such a way that its vertical axis lies in the direction 

of the gravity vector. 

Since the computations are carried out on the surface of a reference ellipsoid, then 

we have to replace the actual observations by fictitious ones based on the direction of 

the normal to the ellipsoid.  

The replacement of the actual, the corresponding ellipsoidal one knows 

observations by the fictitious ones, ellipsoidal, is known as the reduction of the actual 

observations. Consequently, measured angles are reduced to angles between two 

planes containing the ellipsoidal normal using equation (6-16), and zenith distances 

are reduced to the equivalent ellipsoidal one using equation (6-13). At stations where 

astronomical observations have been made Laplace equation is satisfied as in equation 

(6-9), distances measured between ground points are reduced to give distances 

between corresponding ellipsoidal points. It is important to notice that the reduction 

must be done through heights above ellipsoid. 

After applying these reductions to all observations then a least-squares adjustment, 

either by using the method of correlates or by the variation of coordinates method, as 

described by many authors (e.g. Rainsford 1957, Tienstra 1965), is applied to the 

observations. 

It is important to point out that the network is adjusted in a two dimensional frame 

consisting of latitudes and longitudes coordinate system defined on the surface of the 

reference ellipsoid. The observation point is assumed to lay on the normal to the 

ellipsoid through the adjusted geodetic position. The complete definition of this point 

with respect to the reference surface requires a third coordinate, which is the 

ellipsoidal height. This is obtained from a separate adjustment of the trignometrical 

levelling data observed for the network, this adjustment usually ignores the distinction 

between the elevations above mean sea level determined by spirit levelling which are 

more nearly orthometric heights, heights above geoid, and ellipsoidal heights, heights 

above the reference ellipsoid. 
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8-1-1   Major Defects 

The major defects of the classical geodetic computation methods can be 

summarized as follows: 

1) Forcing the horizontal angles to fit the Laplace azimuths may alter the 

preliminary positions enough to require a reassessment of the astrogeodetic 

deflections. The consequences of this may include changes in the Laplace 

azimuths, making necessary reiteration of the adjustment. 

2) Distances reduced to the geoid may differ from the corresponding ellipsoidal 

distances, an error of 6 meters in the geoid separation results in an error of 1 

p.p.m. in the base line. In a small country the difference may be small, but in 

a continental area it may be large especially if an old and ill-fitting ellipsoid 

is in use. An example of this case was found in Mergui base in India, where 

the base was 3 meters above mean sea level, and 100 meter above Everest 

spheroid and the acceptance of the mean sea level height would put it wrong 

by 1 in 60000. (Bomford 1971). 

3) The corrected Laplace azimuths are burdened with the observational errors in 

astronomical latitudes, longitudes and azimuths, and accumulated errors in 

the geodetic survey between the origin and the observation point. 

Accordingly fixing these values during the adjustment procedure will affect 

the final adjusted values. 

4) The observed astronomical latitudes and longitudes are not permitted to 

influence the final adjusted positions of the network stations. 

5) The method cannot be adopted to permit the treatment of observed vertical 

angles and other levelling data simultaneously with the horizontal 

measurements. 

8-2   Three Dimensional Geodesy 

In three-dimensional geodesy all the observed quantities horizontal angles, 

distances, vertical angles, spirit levelling, astronomical latitudes, longitudes, and 

azimuths are combined in a single adjustment process, i.e. combining the horizontal 

and vertical adjustment of the network in one adjustment process. Accordingly, we 

can no longer deal with the two dimensional coordinate system as it will not provide 

us with a quite adequate reference frame for the adjustment and consequently, we need 

a three-dimensional Cartesian system of coordinates upon which all the computations 

and adjustments are related. 
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The transformation of the curvilinear coordinate values of point into a three-

dimensional Cartesian system with its origin at the center of the ellipsoid, with one 

axis parallel to the rotational axis of the earth, and another laying in the meridian plane 

of Greenwich, is the well known equation (5-5). The relationships between such a 

coordinate system and the observed geodetic and astronomical observations in 

terrestrial survey networks have been the subject for study by geodesists over the past 

century. 

Bruns 1878 established the basic and fundamental idea of the rigorous 

computations. The main observational data used were, horizontal angles, zenith 

distances, spatial distances, astronomical observations for latitudes, longitudes, and 

azimuths. Determining the position of any point P requires five parameters, three of 

which are ZYX ,,  coordinate of the point based on a rectangular system, and the other 

parameters are the astronomical longitude and latitude of the point, which defines the 

direction of the plumb line. These observations are modeled in a local coordinate 

system WVU ,, . The origin is at the observation station  P, the W axis coincides with 

the plumb line, while the U and V axes are pointing northward and eastward 

respectively, figure (8-1). 
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The azimuth A, and the zenith distances Z, to a neighbor station Q, distances S, 

from the observation station p. is given by 

5.0222 )(

cos

tan

wvuS

s
wZ

u
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        (8-1) 

Taking X  as the vector leading from P toQ in a three coordinate system 
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Where, ee , , and n  are the unit coordinate vectors in the UVW-system. The 

complete derivations for the relations between the local horizon system and the 

rectangular coordinate system are given in Chapter 5. 

Inserting the values of wvu ,,  from (8-3) into (8-1) we obtain 
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    (8-4) 

Since equation (8-4) is somewhat complicated, it’s often and convenient to assume 

suitable approximate values. To compute the corrections, one needs the following 

differential formulas: 
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   (8-5) 

The formulas stated above contain the main principles of three-dimensional 

geodesy. The correction can be done either in X, Y, Z system. The computations are 

done by taking for example , a preliminary values for  , , h to be the same as ,, 

and H for the corresponding points. These preliminary coordinates are converted to 

rectangular coordinates X, Y, and Z according to the equation (5-5). Then azimuths, 

zenith distances and spatial distances are computed from these preliminary coordinates 

by means of (8-4), and compared with the corresponding observed values of A, Z, and 

S. Each difference will furnish one equation of type (8-5) where  A,  Z and  S are 

the differences between the preliminary computed values and observed values. 

A sufficient number of such an equation can then be solved by a least-squares 

adjustment procedure, for the unknowns   ,   ,  h,   , and   . The parameters 

  , and    obtained by this process are really estimates of  and  sec , but are 

burdened by errors in the preliminary values of   and which are usually the 

observed values. 

The methods, presented by Wolf 1963a, are based essentially on this method. In 

forming the coefficients, the constant terms of the observation equations, and the 

preliminary astronomical latitudes and longitudes were set to the corresponding most 

recent geodetic values. 

Hotine 1969, suggests that if astronomical observations of  and have not been 

made at some station in the network, approximate values obtained by interpolating  

and  from other astrogeodetic stations in the area should be submitted. 

Fubara 1972 adopted a similar model for the study of the requirements for 

successful three-dimensional adjustment, using first a simulated net of 15 stations and 

then a real 6 stations network. He concluded that 

1) Precise astronomical latitudes should be observed at each station on the net. 

2) No significant differences between the adjustment in curvilinear and 

Cartesian coordinates. 

3) Because of the low precision on the vertical angles used, the geodetic heights 

were the most weakly determined. The remedial efficiency of including spirit 

leveled heights, and gravity observations were recognized and are being 

investigated. 
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  Stolz 1972 used gravimetrically determined deflection of the vertical only at 

points where astronomical observations of latitudes and longitudes had not been 

observed. 

The importance which Hotine, Fubara, and Stolz on having observed or interpolated 

astronomical latitudes at every station is due to the fact that the diagonal coefficient of 

  in the normal equations matrix becomes very small if the astronomical latitude  

is not available. The solution of a normal equation set with a number of small diagonal 

coefficients exhibits all the symptoms of ill conditioning. 

Hradilek 1972 investigates the erroneous influence of refraction in the three-

dimensional model and the possibility of estimating it from the vertical angles. Also 

the adjustment procedure, which should represent an optimal transfer of information 

from the original observables to their functions, to the coordinates of the points in 

particular. He pointed out also that except in the plain regions with the elevations 

under 200 meters above the sea level. A constant value of the coefficient of refraction 

for all lines of sight radiating from one station, but different for the other stations, 

proved to be most practicable. 

8-3   Differential Formulas in Three-Dimensional Adjustment 

For the purpose of adjustment, the method of variation of coordinates is a suitable 

one. The observation equations used for the adjustment are derived from equation (8-

4) after linearizing it. A sufficient number of these observation equations preferably 

subjected to a least squares adjustment will permit the solution for the unknowns  X, 

 Y,  Z,   and   for each station. The direct approach of evaluating the 

observation equations was given by Wolf 1963. Another approach for the evaluation 

of the differential formulas is given here (Moritz 1978). 

It was mentioned before, section (5-5), that the coordinates of any point Q in a local 

system with respect to the observables S, Z, and A could be computed from the 

equation (5-1) and in the same time the relation connecting the local horizon system 

with X, Y, and Z system, section (5-6-3) was given by 

XRU            (8-6) 

Where
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Differentiating equation (5-1) yields to 
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The quantities sz,, are the normal equivalents of the observables szA ,, , so that 
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          (8-8) 

And can be computed from (8-4) by using approximate coordinates YX , , Z  and 

replacing , by  , . 

Now, by differentiating (8-6), and substituting dU  by its equivalent from (8-7), we 

get: 

XdRDXRdD
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TT sin       (8-9) 

The second term, XRdDT  , represents the effect of d  and d , on the observable 

SAZ ,,  

 sincos dZ         (8-10) 
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The effect of d  and d  on the spatial distance S  is zero, because S  doesn’t 

depend on the direction of the plumb line.If we substitute   by  , and  by  cos  

and rewrite the equation (8-9) in full, we get 
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           (8-11) 

Instead of computing the corrections in the rectangular coordinate system X, Y, and 

Z as in (8-11), it is suitable to compute the corrections in the geodetic coordinate 

system h,, , because the coordinates of the Egyptian geodetic network are given in 

this system. The transformation from the rectangular system to the geodetic system 

can be obtained by rewriting equation (7-19) with 0,,,, 000 faZYX   
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           (8-12) 

Now, inserting the equation (8-12) into equation (8-11) and after some arrangement, 

we can get the required differential formula in the geodetic system  ,  , and h . 
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Chapter 9 

Geodetic Positioning By Satellites Geodesy 

9-1   Introduction 

Artificial satellites are of use to geodesy in two ways, dynamic and geometrical. 

The dynamic is based on the fact that given the external gravity field of the earth, the 

orbit of the satellite is predictable. 

Conversely, if the orbit is observed, certain constants in the expression of the 

field are determinate. The dynamic use may namely be for, Refinement of the gravity 

field, Geoid determination, polar motion determination, and Crustal movement. 

In the geometrical use, the satellite is simply used as a beacon or radio 

transponder. Its movement is no more than nuisance, except in so far as it moves the 

beacon from one convenient site to another. Knowledge of the orbit is only required 

for predicting its movements. The geometrical use may take the form of satellite 

triangulation or trilateration or combination of the two or the Doppler method, and 

lastly GPS. 

9-2   Kinds of artificial satellites 

Earth satellite systems have been developed and operated successfully to provide 

a variety of services. Among these services we have, communication satellites, 

metrological, earth resources, navigational, military and geodetic satellites. For 

geodetic purposes the satellites are these kinds:  

1) Passive Satellite, which does not have an internal power source and thus is 

illuminated by the sun, so it can be photographed against the celestial 

background. 

2) Co-operative Satellite, which carries a passive target as a reflector that co-

operate with a ground based emitter of power (as a laser beam) to reflect the 

emitted signal back to its source on the ground. 

3) Active Satellite, which emits an optical or electronic signals using its own 

internal source of power and these signals are received by the instruments of 

the observing stations on the ground. 

According to the characteristics of each kind of geodetic satellite, certain 

techniques of satellite observations will be required. 
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9-3   Orbits of satellites geodesy 

Considering a satellite moving around an imaginary uniform spherical earth, 

isolated in space with evenly distributed mass and with no atmosphere. Then the 

satellite orbit would be perfect Keplerian ellipse and would not change with time, with 

the earth’s center at one of its foci. 

Since the earth is not a uniform sphere, there are differences that cause an 

obvious change in the numerical values of the Keplerian orbital parameters. 

Nevertheless, it is convenient to regard the orbit to be, in the first approximation, 

Keplerian, and treat the perturbation as temporal variations of the six elements 

describing such a Keplerian motion. 

Thus, these orbital elements will be functions of time and have to be updated at 

every epoch of observation. 

The six Keplerian orbital parameters figure (9-1), are defined as follows; 

1) The semi-major axis of the orbital ellipse “a” 

2) The eccentricity of the orbital ellipse “e” 

3) The inclination of the orbital plane with respect to the earth’s equatorial 

plane “I” 

4) The right ascension of the ascending node of the orbit “” 

5) The argument of perigee “” 

6) The true anomaly “v” 

Fig(9-1) 

The first two parameters defines the size and shape of the orbital ellipse, the third 

and forth define the orientation of the orbital plane with respect to the earth’s equator, 

the fifth parameter defines the orientation of the line of apsides in orbital plane, the 

sixth parameter defines the position of the satellite in the orbit at any epoch. The line 
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of nodes is the intersection of the orbital plane with the plane of the equator; it 

connects the ascending and descending nodes. The right ascension of the node, , is 

the angle between the line of nodes and the direction to the vernal equinox . The 

major axis of the orbit, known as line of apsides, intersects the orbital ellipse at the 

perigee, the position where the satellite is closest to the earth, and at the apogee, where 

the satellite is farthest away. The angle, , between the nodes and the major axis is the 

argument of perigee. The angular distances of the satellite S is called the true anomaly 

and denoted by V. 

9-4   Satellite orbital coordinate system 

The origin of the satellite orbital coordinate system is at the earth’s center of mass 

“c.g”. The X-axis coincide with the line of apsides, the Y-axis corresponds to V=90, 

and the Z-axis completes the right-handed system. From figure (9-2) the eccentric 

anomaly E is the angle between line of apsides and the line joining the geometrical 

center of the ellipse with the projection of the satellite S on the concentric circle of 

radius a. the relation between the true and eccentric anomaly is given as 

2 0.5tan (1 ) sin / (cos )V e E E e         (9-1) 

The instantaneous position vector of a satellite in the orbital system is given by: 
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    (9-2)  

   

The equation of the orbital ellipse may be written as  

/ (1 cos )r P e V          (9-3) 

Where r is the distance of the satellite from the earth’s center of mass and  

2 2/ (1 )P b a a e           (9-4) 

Is the length of the radius vector r for V=90. Accordingly equation (9-2) can be 

given as a function of the true eccentric anomaly. 
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Fig (9-2) 

 

 

9-5 Relation between satellite orbital coordinates system OR and the 
right ascension coordinate system R.A 

The origin of the right ascension coordinate system is at the center of the gravity 

of the earth. The X-axis points towards the mean vernal equinox, and lies in the mean 

celestial equator. The Z-axis coincides with the mean rotational axis of the earth. The 

Y-axis is selected to make the system right-handed. The transformation from the 

orbital system (OR) to the RA system is done through three angles , , figure (9-3). 

The first rotation R (-) around Z brings the X axis in the equatorial plane; the 

second rotation R (- ί) around the new position of the X makes the Z-axis coincide 

with the mean rotational axis of the earth Z the final rotation R(-) around the Z again 

makes the X coincide with the vernal equinox and the complete transformation reads 

         
         
        

       ( )   
   

(  )   
   

( ) 
 
 

         
    (9-5) 
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Fig(9-3) 

9-6   Relation between right ascension system R.A and average 
terrestrial system A.T  

The right ascension system is transformed into the average terrestrial system by 

means of one single rotational angle (GAST) around the Z-axis, which makes the 

vernal equinox coincides with the Greenwich mean astronomical meridian, figure (9-

4), the transformation from the R.A system to the A.T system is given as 

                  
         
         
        

           (    )    
 
 

         
     (9-6) 

Combining equations (9-2), (9-5), (9-6) then the transformation of the satellite 

orbital coordinate system O.R to the average terrestrial system A.T is given as 
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  (9-7) 
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9-7  Satellite observation techniques 

Since the satellite at a certain time is nothing else but an elevated target. Three 

different techniques of observation are usually used. 

1. Direction (or angle) measurements; where simultaneous observations from 

ground stations to the satellite at a certain position will form a satellite 

triangulation. 

2. Range measurements; it is obtained by timing the travel time of the 

electromagnetic waves “laser” between the tracking station and the satellite, 

or a radio pulse emitted usually by satellite and received at the tracking 

station. Thus forming a satellite trialteration. 

3. Range difference; it is known in practice as Doppler measurements, which is 

analogous to the terrestrial observation of elevation differences. 
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9-7-1   Direction Measurements 

For geodetic purposes the direction of a satellite at any instant cannot usefully be 

recorded by measuring its azimuth and zenith distances with a theodolite. The 

practical method is to photograph the satellite against a background of stars. The stars 

and satellite positions are identified on the photographic plate, and measurements are 

made for the location of the satellite image relative to images of the known stars. With 

the right ascension  and declination  of the stars known, the topocentric ij and ig of 

the satellite can be estimated. The mathematical model of this mode is given by using 

figure (9-5) as: 

0j i ijr r r  
              (9-8) 

Where ir  and jr  are radius vectors of the observing point and satellite 

respectively.  

 

The topocentric vector  ri j    in the A.T system is given by  
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    (9-9) 

It should be mentioned that the orbit in this case is unknown. An astro-

triangulation net can be formed by observing each satellite position from two ground 

stations at least. Also at least one measured distance or the coordinates of two ground 

stations are required for the scale. This simple procedure has several problems that 

limit its accuracy and make it complicated. The most troublesome is the uncertainty in 
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modeling the camera lens distortion, atmospheric refraction and the accuracy of the 

catalogued star positions presents additional limitations. 

9-7-2   Range measurements 

This technique of observation is similar to trialteration technique where as in 

figure (9-5), ijR is the measured range, distance, from the tracking station Pi to the 

satellite position . The mathematical model can evidently be written as; 

2 2 2 0.5[( ) ( ) ( ) ] 0i j i j i j ijX X Y Y Z Z r      
    (9-10) 

From the equation (9-10) we can see that we need to know the coordinates of at 

least three satellites positions in order to solve three equations of the form (9-10) to 

obtain the coordinates of the unknown tracking station. On the other hand if the 

coordinates of at least three tracking stations are known, then by simultaneous range 

observations from these stations to the satellite instantaneous position, three equations 

of the form (9-10) can be solved for the unknown coordinates of the satellite position. 

From the above discussion we conclude that in the range measurements we need at 

least three known ground tracking coordinates for simultaneous observations with the 

other unknown stations. 

9-7-3   Range difference measurements (Doppler technique) 

The idea of the Doppler technique is defined as the apparent change in frequency 

of a transmitted signal due to the relative motion between the transmitter and receiver. 

The principle was discovered by Christian Doppler, an Austrian physicist, in 1842. In 

experimenting with sources of wave motion, which can be sound or light, he found 

that when an object emitting a signal at a constant frequency moves towards an 

observer, the observer received a signal, which is of higher frequency than the signal 

radiated. In short, any movement between a constant frequency source and an observer 

produced a change in the frequency of the received signal. This effect is referred to as 

Doppler frequency shift. This means that a greater number of pulses (higher 

frequency) will be received in a given time interval as the emitter approaches than will 

be received in the same length interval as the emitter departs. 

In the Doppler method, the satellite is the transmitter and the Doppler receiver is 

the observer. The satellite transmits a highly stable electromagnetic signal at 400 

megahertz, MHz, 400 million cycles per seconds, A signal is also transmitted at 150 

MHz, which is used to correct for ionospheric refraction. To the receiver on the 

ground, the frequency of the 400 MHz signal appears to change as the satellite passes 

overhead. Figure (9-6) illustrates the Doppler measurement technique. The frequency f 
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r being received from the satellite consists of the frequency transmitted f t plus a 

Doppler frequency shift of up to 8 kHz due to relative motion between the satellite 

and the receiver. The navigation receiver is equipped with a stable reference oscillator 

from which a 400 MHz ground reference frequency fg  is derived. 

 

 

 

 

As the satellite moves closer, more cycles per second must be received than were 

transmitted to account for the shrinking number of wavelengths along the propagation 

path. For each wavelength the satellite moves closer, one additional cycle must be 

received. Therefore, the Doppler frequency count is a direct measure of the change in 

distance between the receiver and the satellite over the Doppler count interval. In other 

words, the Doppler count is a geometric measure of range difference between the 

observer and the satellite at two points in space, accurately defined by the navigation 

message. This is a very sensitive measure because each count represents wavelength, 

which at 400MHz is only 0.75 meter. 

The equation defining the Doppler count N of g rf f is the integral between 

respect of time marks from the satellite. For example,  

2 2/

1

1 1/

( )

t r c

g r

t r c

N f f dt





 
        (9-11) 

Note that 1 1 /t r c  is the time of receipt of the satellite time mark that was 

transmitted at time 1t . The signal is received after propagation over distance 1r  at the 

velocity of light c. Equation (9-11) represents the actual measurements made by the 

satellite receiver, but it is helpful to expand this equation into two parts: 
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N1 = ∫      
        
       

   ∫      
        
       

      (9-12) 

Because the first integral in equation (9-12) is of a constant frequency gf , it is 

easy for integration but the second integral is of a changing frequency rf . However, the 

second integral represents the number of cycles received between the times of receipt 

of two timing marks. By a conservation of cycles argument this quantity must equal 

identically the number of cycles transmitted during the time interval between 

transmission of these time marks. Using this identity, equation (9-12) can be written  

  

N1=  ∫      
        
       

   ∫      
   
   

       (9-13) 

Because the frequencies fg and ft  are assumed constant during a satellite pass, the 

integrals in equation (9-13) become trivial, resulting in  

1 2 1 2 1 2 1

1
[( ) ( )] ( )g tN f t t r r f t t

C
     

     (9-14) 

Rearranging the terms in equation (9-14)  

1 2 1 2 1( )( ) ( )
g

g t

f
N f f t t r r

C
    

     (9-15) 

The values of the constants in equation (9-15) are 

2 1 120t t t  
  Seconds. 

400gf 
    

MHz 

299,792.5C  Km/Second 

And can be summarized as follows 

 The observed quantity 1N is an integer called Doppler Count. 

 The frequency difference ( )g tf f is assumed constant. 

 The distance difference 2 1( )r r is unknown and can be expressed in terms 

of the observed Doppler count as 

2 1 1 2 1( ( )( ))ijk g t

g

C
r r r N f f t t

f
     

     (9-16) 

With the satellite position known, the range difference can be used to determine 

the geodetic position of the receiver. From figure (9-7), the range difference 

mathematical model is given by 
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0k i j i ijkr r r r r    
       (9-17) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where 1r  is the unknown position of the tracking station,Pi and ,j kr r  are two 

known successive positions ,j kS S , of the satellite on one orbital arc (pass) and ijkr  is 

the range difference observed at iP between the two positions ,j kS S . For each range 

difference measurements one equation of the form (9-17) can be written. Thus in 

theory, with three measurements the three unknown coordinates (x, y, z) can be 

uniquely determined, more than three observations lead to redundancy. In practice, 

care must be taken to include observations to satellite during different passes and with 

varied elevation angles so as to have a favorable geometrical configuration, otherwise, 

the configuration may lead to ill-conditioned solutions. 
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9-8   Satellite Signal “message” 

Three kinds of information are transmitted by the active satellite,  

1- Two frequency levels, 400 MHz and 150 MHz, controlled by a high stable 

oscillator, from which Doppler measurements can be made. 

2- Accurate timing signals, two minute UT apart. 

3- Orbital parameters, giving the predicted satellite position at instants of 

transmitting the timing signals. 

The last two kinds are known as ephemeris, and it is defined as an ephemeris is 

basically a set of numbers or parameters which describe a satellite’s orbit and its 

position along that orbit at a given time. There are two different types of ephemeris, 

Broadcast ephemeris and precise ephemeris. 

9-8-1    Broadcast ephemeris System 

The broadcast ephemeris is predicted by extrapolating tracking data collected by 

four stations, all of which lie in the united states territory. They are operated by the 

Navy Astronauts Group (NAG). There stations track all transit satellites at every 

opportunity and transmit the data to a central computing facility and control center. 

The orbit computation is carried out once per day . From the orbit determination, the 

broadcast ephemeris is extrapolated about 36 hours ahead. This computation is carried 

out daily,  with 24 hours of new data added each time. The predicted ephemeris is then 

injected into the respective satellite twice daily to maintain fresh orbital parameters. 

9-8-2   Precise Ephemeris System 

All the transit satellites are tracked using a network of over 20 tracking stations 

distributed around the world, and the tracking information is collected at a central 

computing facility. The precise ephemeris is computed for one or two of the satellites 

and the computations is carried out on alternate days using 48 hours of tracked data.  

Distribution of the precise ephemeris is controlled and it is available only to the 

government agencies and not for commercial users. The ephemeris is generally 

considered accurate within 2 or 3 meters, but as it is available for more than two of the 

transit satellite (5 as total), its use involve relatively long occupancy of a station for 

acquisition of a prescribed number of passes. 

Major differences between the precise and broadcast ephemeris systems can be 

summarized as follows: 
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1) The broadcast ephemeris is available at the time of observation, whereas the 

precise ephemeris, if it is obtainable at all, is not available until several weeks 

after observations has been taken. 

2) The broadcast ephemeris is based on tracking information from 4 stations as 

opposed to about 20 for precise. 

3) The broadcast ephemeris is a prediction of the satellite or orbit, where the 

precise ephemeris is derived from the observed orbit. 

4) The two systems are based on different geopotential models and station 

coordinate sets and, in some cases, use different values for basic constants in 

the respective generating programs. 

5) The broadcast ephemeris has an accuracy of about 20 to 30m, while the 

accuracy of the precise ephemeris is one order better at about 2 to 3m. 

9-9   Different techniques of Doppler positioning  

There are a number of ways Doppler positioning may be used to find the three 

dimensional position of a point on the earth’s surface, the different techniques may be 

classified according to the type of position obtained, absolute or relative position. 

Point positioning techniques will give an absolute position of a point. Translocation or 

short arc techniques will give the position of points relative to other points. 

9-9-1   Point positioning 

Point positioning system is the process of collecting data from multiple satellite 

passes at one location, along with an ephemeris, to determine the independent station 

position referenced to the earth centered satellite coordinate system. The ephemeris is 

used may be either precise or broadcast and the coordinate reference frame and 

accuracy achieved are dependent on this choice. The use of precise ephemeris will 

give positions in the NSWC-9z2 reference system while broadcast ephemeris will give 

station positions in the NWL-1OD reference system. In this technique the position of 

the satellite in its orbit is assumed to be error-free and is held fixed in determining the 

position of the Doppler receiver.  

Data from 35 to 40 passes, which can be collected in less than 4 days, are 

required for point positioning to yields results of better than 2m in each coordinate 

using broadcast ephemeris. While the precise ephemeris produces accuracy better than 

1 meter. 
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9-9-2   Translocation Technique 

Two Doppler receivers are operated simultaneously within a few hundred 

kilometers of each other. One of the occupied stations is of known coordinates. 

Satellite passes observed by both Doppler receiver are used in the computation of 

the relative positions of these stations with respect to each other. The basis for a 

translocation is that ephemeris errors will affect the positions of both stations in the 

same manner and, therefore, the relative accuracy between the two stations will be 

improved. The accuracy achieved by translocation varies with the inter-station 

distance between translocated stations. In case of precise ephemeris, the accuracy is 

about 0.3 to 0.5 meters plus 2 ppm of the inter-station distance. This is practically 

favorable for distances less than 500 km. 

9-9-3 Short arc Technique 

It requires the use of six or more receivers operating over the same period. 

Each pass of satellite must be observed by at least four of the receivers. A minimum 

of three station must be known in the short arc adjustment in addition to some 

orientation constraints. The accuracy of this method is about 0.5 to 0.25 meters. 

 


